
Ensemble Methods

• Construct a set of classifiers from the training
data

• Predict class label of previously unseen
records by aggregating predictions made by
multiple classifiers

 Ensemble methods aim at “improving classification accuracy
by aggregating the predictions from multiple classifiers” (page
276)

 One of the most obvious ways of doing this is simply by
averaging classifiers which make errors somewhat independently
of each other

General Idea
Original

Training data

....
D

1
D

2 D
t-1

D
t

D

Step 1:

Create Multiple

Data Sets

C
1

C
2

C
t -1

C
t

Step 2:

Build Multiple

Classifiers

C*

Step 3:

Combine

Classifiers

Why does it work?

• Suppose there are 25 base classifiers

– Each classifier has error rate,  = 0.35

– Assume classifiers are independent

– Probability that the ensemble classifier makes a
wrong prediction:




 






25

13

25 06.0)1(
25

i

ii

i


Solution (continued):

10*.7^3*.3^2 + 5*.7^4*.3^1 + .7^5

1-pbinom(2, 5, .7)

Solution (continued):

1-pbinom(50, 101, .7)

Examples of Ensemble Methods

• How to generate an ensemble of classifiers?

– Bagging

– Boosting

 Ensemble methods include

-Bagging (page 283)

-Boosting (page 285)

-Random Forests (page 290)

 Bagging builds different classifiers by training on repeated
samples (with replacement) from the data

 Boosting combines simple base classifiers by upweighting data
points which are classified incorrectly

 Random Forests averages many trees which are constructed
with some amount of randomness

Bagging

• Sampling with replacement

• Build classifier on each bootstrap sample

• Each sample has probability (1 – 1/n)n of being
selected

Original Data 1 2 3 4 5 6 7 8 9 10

Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9

Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2

Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

Boosting

• An iterative procedure to adaptively change
distribution of training data by focusing more
on previously misclassified records

– Initially, all N records are assigned equal weights

– Unlike bagging, weights may change at the end of
boosting round

Boosting

• Records that are wrongly classified will have
their weights increased

• Records that are classified correctly will have
their weights decreased

Original Data 1 2 3 4 5 6 7 8 9 10

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3

Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2

Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Example 4 is hard to classify

• Its weight is increased, therefore it is more likely
to be chosen again in subsequent rounds

Boosting

Round 1 + + + -- - - - - -
0.0094 0.0094 0.4623

B1

 = 1.9459

Illustrating AdaBoost
Data points
for training

Initial weights for each data point

Original

Data + + + -- - - - + +

0.1 0.1 0.1

Illustrating AdaBoost
Boosting

Round 1 + + + -- - - - - -

Boosting

Round 2 - - - -- - - - + +

Boosting

Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

 = 1.9459

 = 2.9323

 = 3.8744

Example: AdaBoost

• Base classifiers: C1, C2, …, CT

• Error rate:

• Importance of a classifier:

 



N

j

jjiji yxCw
N 1

)(
1










 


i

i
i






1
ln

2

1

Example: AdaBoost

• Weight update:

• If any intermediate rounds produce error rate
higher than 50%, the weights are reverted back
to 1/n and the resampling procedure is repeated

• Classification:

factor ionnormalizat theis where

)(ifexp

)(ifexp)(
)1(

j

iij

iij

j

j

ij

i

Z

yxC

yxC

Z

w
w

j

j




















 



T

j

jj
y

yxCxC
1

)(maxarg)(* 

 Here is a version of the AdaBoost algorithm

 The algorithm repeats until a chosen stopping time

 The final classifier is based on the sign of Fm

 One way to create random forests is to grow decision trees top
down but at each node consider only a random subset of
attributes for splitting instead of all the attributes

 Random Forests are a very effective technique

 They are based on the paper

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001

 They can be fit in R using the function randomForest() in the
library randomForest

http://sites.google.com/site/stats202/data/sonar_train.csv

http://sites.google.com/site/stats202/data/sonar_test.csv

http://sites.google.com/site/stats202/data/sonar_train.csv

http://sites.google.com/site/stats202/data/sonar_test.csv

Solution:

install.packages("randomForest")
library(randomForest)
train<-read.csv("sonar_train.csv",header=FALSE)
test<-read.csv("sonar_test.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
fit<-randomForest(x,y)
1-sum(y_test==predict(fit,x_test))/length(y_test)

