Ensemble Methods

* Construct a set of classifiers from the training
data

* Predict class label of previously unseen
records by aggregating predictions made by
multiple classifiers

Ensemble Methods (Section 5.6, page 276)

® Ensemble methods aim at “improving classification accuracy
by aggregating the predictions from multiple classifiers” (page
276)

® One of the most obvious ways of doing this is simply by
averaging classifiers which make errors somewhat independently

of each other

General Idea

Step 1:
Create Multiple
Data Sets

Step 2:
Build Multiple
Classifiers

Step 3:
Combine
Classifiers

Original
D Training data

:

«— U <

v

<

O &

44—

O

—

¢

Why does it work?

e Suppose there are 25 base classifiers
— Each classifier has error rate, £ = 0.35
— Assume classifiers are independent

— Probability that the ensemble classifier makes a
wrong prediction:

i(zﬂgi (1-£)*" =0.06

i—13\ |

Suppose | have 5 classifiers which each classify a point
correctly 70% of the time. If these 5 classifiers are
completely independent and | take the majority vote,
how often is the majority vote correct for that point?

Suppose | have 5 classifiers which each classify a point
correctly 70% of the time. If these 5 classifiers are
completely independent and | take the majority vote,
how often is the majority vote correct for that point?

Solution (continued):

10%,77°3%.372 + 5%.774% . 371 + 775
or

1-pbinom(2, 5, .7)

Suppose | have 101 classifiers which each classify a
point correctly 70% of the time. If these 101 classifiers
are completely independent and | take the majority

vote, how often is the majority vote correct for that
point?

Suppose | have 101 classifiers which each classify a
point correctly 70% of the time. If these 101 classifiers
are completely independent and | take the majority
vote, how often is the majority vote correct for that
point?

Solution (continued):

1-pbinom(50, 101, .7)

Examples of Ensemble Methods

* How to generate an ensemble of classifiers?
— Bagging

— Boosting

Ensemble Methods (Section 5.6, page 276)

® Ensemble methods include
-Bagging (page 283)
-Boosting (page 285)
-Random Forests (page 290)

® Bagging builds different classifiers by training on repeated
samples (with replacement) from the data

® Boosting combines simple base classifiers by upweighting data
points which are classified incorrectly

® Random Forests averages many trees which are constructed
with some amount of randomness

Bagging

* Sampling with replacement

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

* Build classifier on each bootstrap sample

* Each sample has probability (1 — 1/n)" of being
selected

Bagging Round 1:

X 01 |02 | 02| 03| 04|04 05|06 |09 |09

¥ 1 1 1 1 -1 -1 -1 -1 1 1
Bagging Round 2:

X 01 | 02| 03| 04| 05| 08 | 09 1 1 1

y 1 1 1 -1 -1 1 1 1 1 1
Bagging Round 3:

X 01 |02 | 03| 04 | 04 |05 |07 |07 | 08|09

¥ 1 1 1 -1 -1 -1 -1 -1 1 1
Bagging Round 4:

X 041 | 04 02 | 04 | 04 |05 | 05|07 | 08 |09

y 1 1 1 -1 -1 -1 -1 -1 1 1
Bagging Round 5:

X 01 | 04 02 | 05 | 06 | 06 | 06 1 1 1

¥ 1 1 1 -1 -1 -1 -1 1 1 1
Bagging Round &:

X 02 |04 | 05| 06 | 07|07 | 07|08 | 09 1

¥ 1 -1 -1 -1 -1 -1 -1 1 1 1
Bagging Round 7:

X 01 |04 |04 | 06 | 07 | 08 | 09 | 09 | 09 1

y 1 -1 -1 -1 -1 1 1 1 1 1
Bagging Round 8:

X 01 |02 | 05| 05| 05|07 |07 |08 | 09 1

¥ 1 1 -1 -1 -1 -1 -1 1 1 1
Bagging Round 9:

X 01 103 |04 | 04 | 06| 07 | 0.7 | 08B 1 1

y 1 1 -1 -1 -1 -1 -1 1 1 1
Bagging Round 10:

X 041 | 04 01 | 04 03 | 03 08 (08 | 09 |09

y 1 1 1 1 1 1 1 1 1 1

Figure 5.35. Example of bagging.

X<=035=>y=1
X=035==>y=-1

X<=065=>y=1
X=065=>y=1

X<=035==>y=1
X>035=>y=-1

X<=03=>y=1
X=03=>y=-1

X<=035==>y=1
X¥>035=>y=-1

X<=075=>y=-1
X=075===y=1

X<=075==>y=-1
X=075=>y=1

X<=075=>y=-1
X=>075=>y=1

Xx<=075=>y=-1
X>075=y=1

X<=005=>y=-1
x>005=>y=1

0.1 |x=0.2|x=0.3| x=0.4| x=0.5|x=0.6 |x=0.7 | x=0.8 | x=0.9(x=1.0

X=

1

Round

10

Sum

Sign

True Class

Figure 5.36. Example of combining classifiers constructed using the bagging approach.

Boosting

* An iterative procedure to adaptively change
distribution of training data by focusing more
on previously misclassified records
— Initially, all N records are assigned equal weights

— Unlike bagging, weights may change at the end of
boosting round

Boosting

* Records that are wrongly classified will have
their weights increased

* Records that are classified correctly will have

their weights decreased
Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 4 9 4 2 5 1 7 4 2
Boosting (Round 3) é@ 8 | 10 @ 5 @ 6 | 3 @i

e Example 4 is hard to classify

e |ts weight is increased, therefore it is more likely
to be chosen again in subsequent rounds

Original
Data

Boosting
Round 1

Illustrating AdaBoost

Initial weights for each data point Data points
AL for training
- N
0.1 0.1 0.1
+| +|+ - |- + |+
e
Bl
0.0094 0.0094 0.4623
+ |+ |+ - 1= |- - |-

. o =109459

Boosting
Round 1

Boosting
Round 2

Boosting
Round 3

Overall

Illustrating AdaBoost

0.0094 | 0.0094
|
|

0.3037 0.0009

0.4623

B2

I 0.0422

1

I_'l_'|;| "El' 'i o = 2.9323

B3

0.0276 0.1819 0.0038 1
|

+++ ++++ + ++!
|

|

+++ - - - - +

>

o =3.8744

Example: AdaBoost

* Base classifiers: C,, C,, ..., C;

* Error rate:

* Importance of a classifier:

1 (1—&
a =—In
2 &,

Example: AdaBoost

* Weight update;y _, .
W(J+1):@<6Xp . |f CJ(XI):y|
7. \expo‘j if C,(x) =Y,

J

where Z j IS the normalization factor

* If any intermediate rounds produce error rate
higher than 50%, the weights are reverted back
to 1/n and the resampling procedure is repeated

. Classificationz* T

C *(x) = arg max Zajﬁ((:j (X) = y)

y j=1

AdaBoost

® Here is a version of the AdaBoost algorithm
First let Fy(x;) = 0 for all x; and

initialize weights w; = 1/n for ¢ = 1, ...,n. Then repeat the following for m from 1 to M:
e Fit the classifier g,, to the training data using weights w; where ¢,, maps each r; to
-1 or 1.

. Compute the weighted error rate ¢,, = Z?:l willy; # gm(x;)] and half its log-odds,
1-— tm
Oy = 5 Llog

o Let Fi), = Flyi1 + @G-

'E'J’?':

e Replace the weights w; with w; = w;e~*m9m ()% and then renormalize by replacing
each w; by w; /(D w;).

The final classifier i1s 1 if Fjy > 0 and -1 otherwise.

® The algorithm repeats until a chosen stopping time

® The final classifier is based on the sign of F

Boosting Round 1:

X 0.1 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.8 1

y 1 -1 -1 -1 -1 -1 -1 1 1
Boosting Round 2:

X 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3

y 1 1 1 1 1 1 1 1 1
Boosting Round 3:

X 0.2 0.2 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.7

y 1 1 -1 -1 -1 -1 -1 -1 -1

(a) Training records chosen during boosting
Round x=0.1 Xx=0.2 [x=0.3 |x=0.4 |x=0.5 |x=0.6 |x=0.7 [x=08 |x=09 [x=1.0

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 0.311 [0.311 |0.311 | 0.01 0.01 | 0.01 0.01 0.01 0.01 0.01
3 0.029 [(0.029 |0.029 [0.228 |0.228 |0.228 |0.228 [0.009 |0.009 |0.009

(b) Weights of training records

Figure 5.38. Example of boosting.

Round |Split Point | Left Class [Right Class ol
1 0.75 -1 1 1.738
2 0.05 1 1 2.7784
3 0.3 1 -1 41195
(a)
Round |x=0.1 |x=0.2 | x=0.3 | x=0.4 | x=0.5 | x=0.6 | x=0.7 | x=0.8 | x=0.9 | x=1.0
1 -1 -1 -1 -1 -1 -1 -1 1 1 1
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 -1 -1 -1 -1 -1 -1 -1
Sum 516 | 516 | 5.16 |-3.08 | -3.08 | -3.08 | -3.08 |0.397 [0.397 | 0.397
Sign 1 1 1 -1 -1 -1 -1 1 1 1

Figure 5.39. Example of combining classifiers constructed using the AdaBoost approach.

Random Forests (Section 5.6.6, page 290)

® One way to create random forests is to grow decision trees top
down but at each node consider only a random subset of
attributes for splitting instead of all the attributes

® Random Forests are a very effective technique

® They are based on the paper

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001

® They can be fit in R using the function randomForest() in the
library randomForest

Step 1:

Original D Create random
Training data vectors

Step 2: n o n
Use random

vector to l' l’ l
build multiple

decision trees MI MTE ﬁl

o

Step 3:
Combine
decision trees

Figure 5.40. Random forests.

Use randomForest() in R to fit the default Random
Forest to the last column of the sonar training data at

http://sites.google.com/site/stats202/data/sonar train.csv

Compute the misclassification error for the test data at
http://sites.google.com/site/stats202/data/sonar_test.csv

Use randomForest() in R to fit the default Random

Forest to the last column of the sonar training data at
http://sites.google.com/site/stats202/data/sonar train.csv

Compute the misclassification error for the test data at
http://sites.google.com/site/stats202/data/sonar_test.csv

Solution:

install.packages("randomForest")
library(randomForest)
train<-read.csv("sonar_train.csv",, header=FALSE)
test<-read.csv("sonar_test.csv",header=FALSE)
y<-as.factor(train[,61])

x<-train[,1:60]

y_test<-as.factor(test[,61])

x_test<-test[,1:60]

fit<-randomForest (x,y)

1-sum(y_test==predict (fit,x_test))/length(y_test)

Table 5.5. Comparing the accuracy of a decision tree classifier against three ensemble methods

Data Set Number of Decision Bagging | Boosting RF
(Attributes, Classes, | Tree (%) (%) (%) (%)
Records)

Anneal (39, 6, 898) 92.09 94.43 95.43 95.43
Australia (15, 2, 690) 85.51 87.10 85.22 85.80
Auto (26, 7, 205) 81.95 85.37 85.37 84.39
Breast (11, 2, 699) 95.14 96.42 97.28 96.14
Cleve (14, 2, 303) 76.24 81.52 82.18 82.18
Credit (16, 2, 690) 85.8 86.23 86.09 85.8
Diabetes (9, 2, 768) 72.40 76.30 73.18 75.13
German (21, 2, 1000) 70.90 73.40 73.00 74.5
Glass (10, 7, 214) 67.29 76.17 T7.57 78.04
Heart (14, 2, 270) 80.00 81.48 80.74 83.33
Hepatitis (20, 2, 155) 81.94 81.29 83.87 83.23
Horse (23, 2, 368) 85.33 85.87 81.25 85.33
Ionosphere (35, 2, 351) 89.17 92.02 93.73 93.45
Iris (5, 3, 150) 94.67 94.67 94.00 93.33
Labor (17, 2, 57) 78.95 84.21 89.47 84.21
Led7 (8, 10, 3200) 73.34 73.66 73.34 73.06
Lymphography (19, 4, 148) 77.03 79.05 85.14 82.43
Pima (9, 2, 768) 74.35 76.69 73.44 77.60
Sonar (61, 2, 208) 78.85 78.85 84.62 85.58
Tic-tac-toe (10, 2, 958) 83.72 93.84 98.54 95.82
Vehicle (19, 4, 846) 71.04 74.11 78.25 74.94
Waveform (22, 3, 5000) 76.44 83.30 83.90 84.04
Wine (14, 3, 178) 94.38 96.07 97.75 97.75
Zoo (17, 7, 101) 93.07 93.07 95.05 97.03

