
1

2

3

4

 Decision trees are just one method for classification

We will learn additional methods in this chapter:

- Nearest Neighbor

- Support Vector Machines

- Bagging

- Random Forests

- Boosting

- Naïve Bayes

5

 You can use nearest neighbor classifiers if you have

some way of defining “distances” between attributes

 The k-nearest neighbor classifier classifies a point

based on the majority of the k closest training points

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

6

 Here is a plot I made using R showing the 1-nearest

neighbor classifier on a 2-dimensional data set.

7

 Nearest neighbor methods work very poorly when the

dimensionality is large (meaning there are a large

number of attributes)

 The scales of the different attributes are important. If

a single numeric attribute has a large spread, it can

dominate the distance metric. A common practice is to

scale all numeric attributes to have equal variance.

 The knn() function in R in the library “class” does a k-

nearest neighbor classification using Euclidean

distance.

8

http://sites.google.com/site/stats202/data/sonar_train.csv

http://sites.google.com/site/stats202/data/sonar_test.csv

9

http://sites.google.com/site/stats202/data/sonar_train.csv

http://sites.google.com/site/stats202/data/sonar_test.csv

Solution:

install.packages("class")
library(class)
train<-read.csv("sonar_train.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
fit<-knn(x,x,y,k=1)
1-sum(y==fit)/length(y)

10

http://sites.google.com/site/stats202/data/sonar_train.csv

http://sites.google.com/site/stats202/data/sonar_test.csv

Solution (continued):

test<-read.csv("sonar_test.csv",header=FALSE)
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
fit_test<-knn(x,x_test,y,k=1)
1-sum(y_test==fit_test)/length(y_test)

11

 If the two classes can be separated perfectly by a line

in the x space, how do we choose the “best” line?

12

 If the two classes can be separated perfectly by a line

in the x space, how do we choose the “best” line?

B
1

13

 If the two classes can be separated perfectly by a line

in the x space, how do we choose the “best” line?

B
2

14

 If the two classes can be separated perfectly by a line

in the x space, how do we choose the “best” line?

B
2

15

 If the two classes can be separated perfectly by a line

in the x space, how do we choose the “best” line?

B
1

B
2

16

 One solution is to choose the line (hyperplane) with

the largest margin. The margin is the distance between

the two parallel lines on either side.

B1

B
2

b
11

b
12

b
21

b
22

margin

17

 Here is the notation your book uses:

B
1

b
11

b
12

0 bxw

1 bxw
 1 bxw

1bxw if1

1bxw if1
)(

xf

18

 This can be formulated as a constrained optimization

problem.

We want to maximize

 This is equivalent to minimizing

We have the following constraints

 So we have a quadratic objective function with linear

constraints which means it is a convex optimization

problem and we can use Lagrange multipliers

2

||||
)(

2w
wL

1bxw if1

1bxw if1
)(

i

i

ixf

19

What if the problem is not linearly separable?

 Then we can introduce slack variables:

Minimize

Subject to

N

i

k

iC
w

wL
1

2

2

||||
)(

ii

ii

1bxw if1

-1bxw if1
)(

ixf

20

What if the boundary is not linear?

 Then we can use transformations of the variables to

map into a higher dimensional space

21

 The function svm in the package e1071 can fit support

vector machines in R

 Note that the default kernel is not linear – use

kernel=“linear” to get a linear kernel

22

http://sites.google.com/site/stats202/data/sonar_train.csv

http://sites.google.com/site/stats202/data/sonar_test.csv

23

http://sites.google.com/site/stats202/data/sonar_train.csv

http://sites.google.com/site/stats202/data/sonar_test.csv

Solution:

install.packages("e1071")
library(e1071)
train<-read.csv("sonar_train.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
fit<-svm(x,y)
1-sum(y==predict(fit,x))/length(y)

24

http://sites.google.com/site/stats202/data/sonar_train.csv

http://sites.google.com/site/stats202/data/sonar_test.csv

Solution (continued):

test<-read.csv("sonar_test.csv",header=FALSE)
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
1-sum(y_test==predict(fit,x_test))/length(y_test)

25

0 0.1 -1

0.8 0.9 -1

0.4 0.5 -1

0.3 0.7 -1

0.1 0.4 -1

0.7 0.3 1

0.5 0.2 1

0.8 0.6 1

0.8 0 1

0.8 0.3 1

26

Solution:

x<-matrix(c(0,.1,.8,.9,.4,.5,
.3,.7,.1,.4,.7,.3,.5,.2,.8,.6,.8,0,.8,.3),
ncol=2,byrow=T)

y<-as.factor(c(rep(-1,5),rep(1,5)))

plot(x,pch=19,xlim=c(0,1),ylim=c(0,1),
col=2*as.numeric(y),cex=2,
xlab=expression(x[1]),ylab=expression(x[2]))

0 0.1 -1

0.8 0.9 -1

0.4 0.5 -1

0.3 0.7 -1

0.1 0.4 -1

0.7 0.3 1

0.5 0.2 1

0.8 0.6 1

0.8 0 1

0.8 0.3 1

27

Solution (continued):

fit<-svm (x,y,kernel="linear",cost=100000)

big_x<-matrix(runif(200000),ncol=2,byrow=T)

points(big_x,col=rgb(.5,.5,
.2+.6*as.numeric(predict(fit,big_x)==1)),pch=19)

points(x,pch=19,col=2*as.numeric(y),cex=2)

0 0.1 -1

0.8 0.9 -1

0.4 0.5 -1

0.3 0.7 -1

0.1 0.4 -1

0.7 0.3 1

0.5 0.2 1

0.8 0.6 1

0.8 0 1

0.8 0.3 1

28

Solution (continued):

0 0.1 -1

0.8 0.9 -1

0.4 0.5 -1

0.3 0.7 -1

0.1 0.4 -1

0.7 0.3 1

0.5 0.2 1

0.8 0.6 1

0.8 0 1

0.8 0.3 1

29

 Ensemble methods aim at “improving classification

accuracy by aggregating the predictions from multiple

classifiers” (page 276)

 One of the most obvious ways of doing this is simply

by averaging classifiers which make errors somewhat

independently of each other

30

31

Solution (continued):

10*.7^3*.3^2 + 5*.7^4*.3^1 + .7^5

1-pbinom(2, 5, .7)

32

33

Solution (continued):

1-pbinom(50, 101, .7)

34

 Ensemble methods include

-Bagging (page 283)

-Random Forests (page 290)

-Boosting (page 285)

 Bagging builds different classifiers by training on

repeated samples (with replacement) from the data

 Random Forests averages many trees which are

constructed with some amount of randomness

 Boosting combines simple base classifiers by

upweighting data points which are classified incorrectly

35

 One way to create random forests is to grow decision

trees top down but at each node consider only a random

subset of attributes for splitting instead of all the

attributes

 Random Forests are a very effective technique

 They are based on the paper

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001

 They can be fit in R using the function randomForest()

in the library randomForest

36

http://sites.google.com/site/stats202/data/sonar_train.csv

http://sites.google.com/site/stats202/data/sonar_test.csv

37

http://sites.google.com/site/stats202/data/sonar_train.csv

http://sites.google.com/site/stats202/data/sonar_test.csv

Solution:

install.packages("randomForest")
library(randomForest)
train<-read.csv("sonar_train.csv",header=FALSE)
test<-read.csv("sonar_test.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
fit<-randomForest(x,y)
1-sum(y_test==predict(fit,x_test))/length(y_test)

