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 Decision trees are just one method for classification

We will learn additional methods in this chapter:

- Nearest Neighbor

- Support Vector Machines

- Bagging

- Random Forests

- Boosting

- Naïve Bayes



5

 You can use nearest neighbor classifiers if you have 

some way of defining “distances” between attributes

 The k-nearest neighbor classifier classifies a point 

based on the majority of the k closest training points

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor
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 Here is a plot I made using R showing the 1-nearest 

neighbor classifier on a 2-dimensional data set. 
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 Nearest neighbor methods work very poorly when the 

dimensionality is large (meaning there are a large 

number of attributes)

 The scales of the different attributes are important.  If 

a single numeric attribute has a large spread, it can 

dominate the distance metric.  A common practice is to 

scale all numeric attributes to have equal variance.

 The knn() function in R in the library “class” does a k-

nearest neighbor classification using Euclidean 

distance.
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http://sites.google.com/site/stats202/data/sonar_train.csv

http://sites.google.com/site/stats202/data/sonar_test.csv
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http://sites.google.com/site/stats202/data/sonar_train.csv  

http://sites.google.com/site/stats202/data/sonar_test.csv

Solution:

install.packages("class")
library(class)
train<-read.csv("sonar_train.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
fit<-knn(x,x,y,k=1)
1-sum(y==fit)/length(y)
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http://sites.google.com/site/stats202/data/sonar_train.csv  

http://sites.google.com/site/stats202/data/sonar_test.csv

Solution (continued):

test<-read.csv("sonar_test.csv",header=FALSE)
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
fit_test<-knn(x,x_test,y,k=1)
1-sum(y_test==fit_test)/length(y_test)
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 If the two classes can be separated perfectly by a line 

in the x space, how do we choose the “best” line?
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 If the two classes can be separated perfectly by a line 

in the x space, how do we choose the “best” line?
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 One solution is to choose the line (hyperplane) with 

the largest margin.  The margin is the distance between 

the two parallel lines on either side.
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 Here is the notation your book uses:
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1 bxw
 1 bxw
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 This can be formulated as a constrained optimization 

problem.

We want to maximize

 This is equivalent to minimizing

We have the following constraints

 So we have a quadratic objective function with linear 

constraints which means it is a convex optimization 

problem and we can use Lagrange multipliers  
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What if the problem is not linearly separable? 

 Then we can introduce slack variables:

Minimize

Subject to
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What if the boundary is not linear? 

 Then we can use transformations of the variables to 

map into a higher dimensional space
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 The function svm in the package e1071 can fit support 

vector machines in R

 Note that the default kernel is not linear – use 

kernel=“linear” to get a linear kernel 
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http://sites.google.com/site/stats202/data/sonar_train.csv

http://sites.google.com/site/stats202/data/sonar_test.csv
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http://sites.google.com/site/stats202/data/sonar_train.csv  

http://sites.google.com/site/stats202/data/sonar_test.csv  

Solution:

install.packages("e1071")
library(e1071)
train<-read.csv("sonar_train.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
fit<-svm(x,y)
1-sum(y==predict(fit,x))/length(y)
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http://sites.google.com/site/stats202/data/sonar_train.csv  

http://sites.google.com/site/stats202/data/sonar_test.csv

Solution (continued):

test<-read.csv("sonar_test.csv",header=FALSE)
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
1-sum(y_test==predict(fit,x_test))/length(y_test)



25

0 0.1 -1

0.8 0.9 -1

0.4 0.5 -1

0.3 0.7 -1

0.1 0.4 -1

0.7 0.3 1

0.5 0.2 1

0.8 0.6 1

0.8 0 1

0.8 0.3 1
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Solution:

x<-matrix(c(0,.1,.8,.9,.4,.5,
.3,.7,.1,.4,.7,.3,.5,.2,.8,.6,.8,0,.8,.3), 
ncol=2,byrow=T)

y<-as.factor(c(rep(-1,5),rep(1,5)))

plot(x,pch=19,xlim=c(0,1),ylim=c(0,1),
col=2*as.numeric(y),cex=2,
xlab=expression(x[1]),ylab=expression(x[2]))
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0.8 0.3 1



27

Solution (continued):

fit<-svm (x,y,kernel="linear",cost=100000)

big_x<-matrix(runif(200000),ncol=2,byrow=T)

points(big_x,col=rgb(.5,.5,
.2+.6*as.numeric(predict(fit,big_x)==1)),pch=19)

points(x,pch=19,col=2*as.numeric(y),cex=2)

0 0.1 -1

0.8 0.9 -1

0.4 0.5 -1

0.3 0.7 -1

0.1 0.4 -1

0.7 0.3 1

0.5 0.2 1

0.8 0.6 1
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Solution (continued):
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 Ensemble methods aim at “improving classification 

accuracy by aggregating the predictions from multiple 

classifiers” (page 276)

 One of the most obvious ways of doing this is simply 

by averaging classifiers which make errors somewhat 

independently of each other
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Solution (continued):

10*.7^3*.3^2 + 5*.7^4*.3^1 + .7^5

1-pbinom(2, 5, .7)
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Solution (continued):

1-pbinom(50, 101, .7)
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 Ensemble methods include

-Bagging (page 283)

-Random Forests (page 290)

-Boosting (page 285)

 Bagging builds different classifiers by training on 

repeated samples (with replacement) from the data

 Random Forests averages many trees which are 

constructed with some amount of randomness

 Boosting combines simple base classifiers by 

upweighting data points which are classified incorrectly
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 One way to create random forests is to grow decision 

trees top down but at each node consider only a random 

subset of attributes for splitting instead of all the 

attributes

 Random Forests are a very effective technique

 They are based on the paper

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001

 They can be fit in R using the function randomForest() 

in the library randomForest
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http://sites.google.com/site/stats202/data/sonar_train.csv  

http://sites.google.com/site/stats202/data/sonar_test.csv
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http://sites.google.com/site/stats202/data/sonar_train.csv  

http://sites.google.com/site/stats202/data/sonar_test.csv

Solution:

install.packages("randomForest")
library(randomForest)
train<-read.csv("sonar_train.csv",header=FALSE)
test<-read.csv("sonar_test.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
fit<-randomForest(x,y)
1-sum(y_test==predict(fit,x_test))/length(y_test)


