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ABSTRACT 

A new method for multivariate outlier detection able to distinguish between extreme 

values of a normal distribution and values originating from a different distribution 

(outliers) is presented.  To facilitate visualising multivariate outliers spatially on a 

map, the multivariate outlier plot, is introduced.  In this plot different symbols refer to 

a distance measure from the centre of the distribution, taking into account the shape of 

the distribution, and different colours are used to signify the magnitude of the values 

for each variable.  The method is illustrated using a real geochemical data set from 

far-northern Europe.  It is demonstrated that important processes such as the input of 

metals from contamination sources and the contribution of sea-salts via marine 

aerosols to the soil can be identified and separated. 

 

KEYWORDS: Multivariate outliers, Robust statistics, Exploration geochemistry, 

Background. 

 

1. INTRODUCTION 

The detection of data outliers and unusual data structures is one of the main tasks in 

the statistical analysis of geochemical data.  Traditionally, despite the fact that 

geochemistry data sets are almost always multivariate, outliers are most frequently 

sought for each single variable in a given data set (Reimann et al., 2005).  The search 

for outliers is usually based on location and spread of the data.  The higher (lower) the 



 2

analytical result of a sample, the greater is the distance of the observation from the 

central location of all observations; outliers thus, typically, have large distances.  The 

definition of an outlier limit or threshold, dividing background data from outliers, has 

found much attention in the geochemical literature and to date no universally 

applicable method of identifying outliers has been proposed (see discussion in 

Reimann et al., 2005).  In this context, background is defined by the properties, 

location and spread, of geochemical samples that represent the natural variation of the 

material being studied in a specific area that are uninfluenced by extraneous and 

exotic processes such as those related to rare rock types, mineral deposit forming 

processes, or anthropogenic contamination.  In geochemistry, outliers are generally 

observations resulting from a secondary process and not extreme values from the 

background distribution.  Samples where the analytical values are derived from a 

secondary process – be it mineralisation or contamination – do not need to be 

especially high (or low) in relation to all values of a variable in a data set, and thus 

attempts to identify these samples with classical univariate methods commonly fail.  

However, this problem often may be overcome by utilising the multivariate nature of 

most geochemical data sets. 

 

In the multivariate case not only the distance of an observation from the centroid of 

the data has to be considered but also the shape of the data.  To illustrate this, 2 

variables with normal distributions having a defined correlation (Figure 1) are 

simulated.  The estimated central location of each variable is indicated by dashed lines 

(their intersection marks the multivariate centre or centroid of the data). 

 

In the absence of a prior threshold (Rose et al., 1979) a common practice of 

geochemists is to identify some fraction, often 2%, of the data at the upper and lower 

extremes for further investigation.  Today this is achieved by direct estimation of the 

percentiles and visual (EDA) inspection of the data.  In previous time when computers 

were not widely available an approximation of the 97.5th percentile was obtained by 

estimating the mean and standard deviation (sdev) for each variate and computing the 

value of mean ± 2⋅sdev.  The 2% limits are indicated by dotted lines on Figure 1.  If 

candidates for outliers are defined to be observations falling in the extreme 2% 

fractions of the univariate data for each variable, the rectangle visualised with bold 
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dots separates potential outliers from non-outliers.  This procedure ignores the 

elliptical shape of the bivariate data and therefore it is not effective. 

 

The shape and size of multivariate data are quantified by the covariance matrix.  A 

well-known distance measure which takes into account the covariance matrix is the 

Mahalanobis distance.  For a p-dimensional multivariate sample nxx ,,1 K  the 

Mahalanobis distance is defined as: 

 ( ) ( )( ) 2/11:MD txCtx −−= −Τ
iii    for   ,,1, ni K=  (1) 

where t is the estimated multivariate location and C the estimated covariance matrix.  

Usually, t is the multivariate arithmetic mean, the centroid, and C is the sample 

covariance matrix.  For multivariate normally distributed data the values 2MD i  are 

approximately chi-square distributed with p degrees of freedom ( 2
pχ ).  By setting the 

(squared) Mahalanobis distance equal to a certain constant, i.e. to a certain quantile of 
2
pχ , it is possible to define ellipsoids having the same Mahalanobis distance from the 

centroid (e.g, Gnanadesikan, 1977). 

 

Figure 1 illustrates this for the bivariate normally distributed data.  The ellipses 

correspond to the quantiles 0.25, 0.50, 0.75 and 0.98 of 2
2χ .  Points lying on an ellipse 

thus have the same distance from the centroid.  This distance measure takes the shape 

of the data cloud into account and has potential for more reliably identifying extreme 

values. 

 

Multivariate outliers can now simply be defined as observations having a large 

(squared) Mahalanobis distance.  As noted above for the univariate case, when no 

prior threshold is available a certain proportion of the data or quantile of the normal 

distribution is selected for identifying extreme samples for further study.  Similarly, in 

the multivariate case a quantile of the chi-squared distribution (e.g., the 98% 

quantile 2
98.0;pχ ) could be considered for this purpose.  However, this approach has 

several shortcomings that will be investigated in this paper.  The Mahalanobis 

distances need to be estimated by a robust procedure in order to provide reliable 

measures for the recognition of outliers.  In the geochemical context what is required 

is a reliable estimate of the statistical properties of natural background.  Using robust 



 4

estimates that remove (trim) or downweight extreme values in a population is an 

effective, if conservative, solution.  It is conservative to the extent that if there are in 

fact no outliers the only consequence is that the true variability (variance-covariance) 

of the data will be underestimated.  Furthermore, by selecting a fixed quantile for 

outlier identification there is no adjustment for different sample sizes.  To address this 

situation an adaptive outlier identification method has been developed.  Finally, the 

multivariate outlier plot is introduced as a helpful tool for the interpretation of 

multivariate data. 

 

2. THE ROBUST DISTANCE 

 

The Mahalanobis distance is very sensitive to the presence of outliers (Rousseeuw and 

Van Zomeren, 1990).  Single extreme observations, or groups of observations, 

departing from the main data structure can have a severe influence on this distance 

measure.  This is somewhat obscure because the Mahalanobis distance should be able 

to detect outliers, but the same outliers can heavily affect the Mahalanobis distance.  

The reason is the sensitivity of arithmetic mean and sample covariance matrix to 

outliers (Hampel et al., 1986).  A solution to this problem is well-known in robust 

statistics: t and C in equation (1) have to be estimated in a robust manner, where the 

expression ‘robust’ means resistance against the influence of outlying observations.  

Many robust estimators for location and covariance have been introduced in the 

literature, for a review see Maronna and Yohai (1998).  The minimum covariance 

determinant (MCD) estimator (Rousseeuw, 1985) is probably most frequently used in 

practice, partly because it is a computationally fast algorithm (Rousseeuw and Van 

Driessen, 1999). 

 

The MCD estimator is determined by that subset of observations of size h which 

minimises the determinant of the sample covariance matrix, computed from only 

these h points.  The location estimator is the average of these h points, whereas the 

scatter estimator is proportional to their covariance matrix.  As a compromise between 

robustness and efficiency, a value of h ≈ 0.75 n (n is the sample size) will be 

employed in this study.  

 



 5

The choice of h also determines the robustness of the estimator.  The breakdown 

value of the MCD estimator is approximately (n-h)/n, with h ≈ 0.75 n the breakdown 

is approximately 25%.  The breakdown value is the fraction of outliers that when 

exceeded will lead to completely biased estimates (Hampel et al., 1986). 

 

Using robust estimators of location and scatter in the formula for the Mahalanobis 

distance (1) leads to so-called robust distances (RD).  Rousseeuw and Van Zomeren 

(1990) used these RDs for multivariate outlier detection.  If the squared RD for an 

observation is larger than, say, 2
98.0;2χ , it can be declared a candidate outlier. 

 

This procedure is illustrated using real data from the Kola project (Reimann et al., 

1998).  Figure 2 shows the plot of Be and Sr determined in C-horizon soils.  Using the 

arithmetic mean and the sample covariance matrix in equation (1) it is possible to 

construct the ellipse corresponding to the squared Mahalanobis distance equal to 
2

98.0;2χ .  This ellipse (often called a tolerance ellipse) is visualised as a dotted line in 

Figure 2.  It identifies the extreme members of the bivariate population and its shape 

reflects the structure of the covariance matrix.  By computing the RDs with the MCD 

estimator another tolerance ellipse (solid line in Figure 2) can be constructed using the 

same quantile, 2
98.0;2χ .  It is clearly apparent that many more points in the upper right 

of Figure 2 are identified as candidate outliers.  These outliers cause the elongated 

orientation and shape of the dotted ellipse through their influence on the classical non-

robust computation.  This influence is also reflected in the resulting correlation 

coefficients.  Whereas the Pearson correlation based on the classical estimates is 0.66, 

the robust correlation based on the MCD estimator is only 0.18.  The next step would 

be an appropriate visualisation of the outliers in a map in order to support the 

geochemical interpretation of the observations.  This will be demonstrated later for 

other examples.  The high correlation of Be and Sr in Figure 2 is due to a few samples 

of soil developed on alkaline rocks that display unusually high concentrations of both 

these elements.  The high non-robust correlation coefficient is thus an inappropriate 

estimate for the majority of the data as it is unduly influenced by true outliers (due to 

completely different geology). 

 

3. MULTIVARIATE OUTLIERS OR EXTREMES? 
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In the univariate case, Reimann et al. (2005) pointed out the difference between 

extremes of a distribution and true outliers.  Outliers are thought to be observations 

coming from one or more different distributions, and extremes are values that are far 

away from the centre but which belong to the same distribution.  In an exploratory 

univariate data analysis it is convenient to start with simply identifying all extreme 

observations as extreme.  It is an important aim of data interpretation to identify the 

different geochemical processes that influence the data.  Only in doing so can the true 

outliers be identified and differentiated from extreme members of the one or more 

background populations in the data.  This distinction should also be made in the 

multivariate case. 

 

In the previous section the assumption of multivariate normality was implicitly used 

because this led to chi-square distributed Mahalanobis distances.  Also for the RD this 

assumption was used, at least for the majority of data (depending on the choice of h 

for the MCD estimator).  Defining outliers by using a fixed threshold value (e.g., 
2

98.0;pχ ) is rather subjective because: 

1) If the data should indeed come from a single multivariate normal distribution, 

the threshold would be infinity because there are no observations from a 

different distribution (only extremes); 

2) There is no reason why this fixed threshold should be appropriate for every 

data set; and 

3) The threshold has to be adjusted to the sample size (see Reimann et al., 2005; 

and simulations below). 

A better procedure than using a fixed threshold is to adjust the threshold to the data 

set at hand.  Garrett (1989) used the chi-square plot for this purpose, by plotting the 

squared Mahalanobis distances (which have to be computed at the basis of robust 

estimations of location and scatter) against the quantiles of 2
pχ , the most extreme 

points are deleted until the remaining points follow a straight line.  The deleted points 

are the identified outliers, the multivariate threshold corresponds to the distance of the 

closest outlier, the farthest background individual, or some intermediate distance.  

Alternately, the cube root of the squared Mahalanobis distances may be plotted 

against normal quantiles (e.g., Chork, 1990).  This procedure (Garrett, 1989) is not 



 7

automatic, it needs user interaction and experience on the part of the analyst.  

Moreover, especially for large data sets, it can be time consuming, and also to some 

extent it is subjective. In the next section a procedure that does not require analyst 

intervention, is reproducible and therefore objective, and takes the above points, 1) to 

3), into consideration is introduced. 

 

4. ADAPTIVE OUTLIER DETECTION 

 

The chi-square plot is useful for visualising the deviation of the data distribution from 

multivariate normality in the tails.  This principle is used in the following.  Let ( )uGn  

denote the empirical distribution function of the squared robust distances 2RD i , and 

let ( )uG  be the distribution function of 2
pχ .  For multivariate normally distributed 

samples, nG  converges to G.  Therefore the tails of nG  and G can be compared to 

detect outliers.  The tails will be defined by 2
1; αχδ −= p  for a certain small α  (e.g., 

02.0=α ), and  

 ( ) ( ) ( )( )+−=
≥

uGuGp nn
δ

δ
u
sup  (2) 

is considered, where “+” indicates the positive differences.  In this way, ( )δnp  

measures the departure of the empirical from the theoretical distribution only in the 

tails, defined by the value of δ . ( )δnp  can be considered as a measure of outliers in 

the sample.  Gervini (2003) used this idea as a reweighting step for the robust 

estimation of multivariate location and scatter.  In this way, the efficiency (in terms of 

statistical precision) of the estimator could be improved considerably. 

 

( )δnp  will not be directly used as a measure of outliers. As mentioned in the previous 

section, the threshold should be infinity in case of multivariate normally distributed 

background data.  This means, that if the data are coming from a multivariate normal 

distribution, no observation should be declared as an outlier.  Instead, observations 

with a large robust distance should be seen as extremes of the distribution.  Therefore 

a critical value critp  is introduced, which helps to distinguish between outliers and 

extremes.  The measure of outliers in the sample is then defined as 
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The threshold value is then determined as ( ) ( )( )δαδ n−= 1-1
nn Gc . 

 

The critical value critp for distinguishing between outliers and extremes can be derived 

by simulation.  For different sample sizes n and different dimensions (numbers of 

variables) p data from a multivariate normal distribution are simulated.  Then 

equation (2) is applied for computing the value ( )δnp  for a fixed value δ  (in the 

simulations 2
98.0;pχδ =  is used).  The procedure is repeated 1000 times for every 

considered value of n and p. 

 

To directly compute the limiting distribution of the statistic defined by equation (2) 

would be a more elegant way for determining the critical value.  However, even for 

related simpler problems Csörgő and Révész (1981, Chapter 5) note that this is 

analytically extremely difficult and they recommend simulation. 

 

The resulting values give an indication of the differences between the theoretical and 

the empirical distributions, ( ) ( )uGuG n− , if the data are sampled from multivariate 

normal distributions.  To be on the safe side, the 95% percentile of the 1000 simulated 

values can be used for every n and p, and these percentiles are shown for p=2, 4, 6, 8, 

10 by different symbols in Figure 3.  By transforming the x-axis by the inverse of n  

it can be seen that - at least for larger sample size - the points lie on a line (see Figure 

3). The lines in Figure 3 are estimated by LTS (least trimmed sum of squares) 

regression (Rousseeuw, 1984). Using LTS regression the less precise simulation 

results for smaller sample sizes have less influence. The slopes of the different lines 

(the intercept is 0 because for n tending to infinity the difference between empirical 

and theoretical distribution is 0) are shown in Figure 4.  The resulting points can again 

be approximated by a straight line, which allows definition of the critical value as a 

function of n and p: 

 ( )
n

ppnpcrit
⋅−

=
003.024.0,,δ    for   10≤p . (4) 
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For larger dimension (p>10) the same procedure can be applied.  The 95% percentiles 

of 1000 simulated values for different sample sizes and dimensions are shown in 

Figure 5.  The linear dependency becomes worse for high dimension and low sample 

size.  The estimated slopes form a linear trend (Figure 6) and the resulting 

approximative formula is: 

 ( )
n

ppnpcrit
⋅−

=
0018.0252.0,,δ    for   10>p . (5) 

 

5. EXAMPLE 

 

To test the procedure data from the Kola project (Reimann et al., 1998) are again 

used.  The objective is to identify outliers in the O-horizon (organic surface soil) data 

caused by industrial  contamination from Ni-smelters.  A combination of two typical 

contaminant elements (Co and Cu), three minor contaminants (As, Cd and Pb) and 

two elements that are not part of the emission spectrum of the Ni-smelters (Mg and 

Zn) are used as a test data set.  Magnesium is influenced by a second major process in 

the study area, the steady input of marine aerosols near the Arctic coast.  This leads to 

a build-up of Mg in the O-horizon, and this process can be detected for more than 100 

km inland (Reimann et al., 2000).  Thus the test-task is to detect outliers in the 7-

dimensional space at the basis of 617 observations.  The procedure for adaptive 

outlier detection is illustrated in Figure 7.  The solid line is the distribution function of 
2
7χ .  Robust squared distances 2RDi  on the basis of the MCD estimator are computed, 

and their empirical distribution function, nG , is represented by small circles.  

According to equation (2) the task is to find the supremum of the difference between 

these two functions in the tails.  With 62.162
98.0;7 == χδ  (dotted line in Figure 7) a 

supremum of ( ) 1026.0=δnp is obtained.  Equation (4) gives a critical value 

( ) 0088.0,, =pnpcrit δ , which is clearly lower than the above supremum.  For this 

reason it can be assumed that large robust distances come from at least one different 

distribution.  From equation (3) the measure of outliers is 10.26%, corresponding to 

65 outliers.  The resulting threshold value ( ) 64.18=δnc  is slightly larger than δ , and 

presented in Figure 7 as a dashed line.  This new threshold value is called the adjusted 

quantile. 
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6. VISUALISATION OF MULTIVARIATE OUTLIERS 

 

An important issue is the visualisation of multivariate outliers, in the simplest case it 

is possible to plot them on a map.  On a map clusters of outliers would indicate that 

some regions have a completely different data structure than others.  Figure 8 shows 

the multivariate outliers for the above example on such a map, using the symbol “+” 

for outliers.  Two clusters of outliers occur in Russia.  As expected, they mark the two 

large industrial centres at Monchegorsk and Nikel with neighbouring Zapoljarnij.  

There are a number of outliers in the northwestern, Norwegian, part of the region.  

This is an almost pristine area with little industry and a low population density (see 

Reimann et al., 1998).  At a first glance it is perhaps surprising to find outliers in this 

area.  The detection of outliers due to contamination was the prime objective of the 

investigation.  However, multivariate outliers are not only observations with high 

values for every variable, more importantly they are observations departing from the 

dominant data structure.  In the case of a data set of contamination related variables, 

outliers also could be observations with very low values for the contamination related 

elements, indicating extremely clean (less-contaminated) regions.  The reality is that 

Mg is highly enriched in marine aerosols and thus enriched in the O-horizon of 

podzols along the Norwegian coast, and in this remote near-pristine area the levels of 

the contamination related elements are within normal background ranges or low.  

Thus the reason for the Norwegian coast outliers is apparent, but Figure 8 makes no 

distinction between contamination and pristine coastal multivariate outliers.  

 

The above demonstrates the necessity for developing a more effective way of 

visualising multivariate outliers.  Firstly, it should be possible to provide a better 

visualisation of the distribution of the robust distances, and secondly it is desirable to 

distinguish between outliers with extremely low values and outliers having very high 

values of the variables. 

 

Both features are fulfilled with the visualisation in Figure 9, the multivariate outlier 

plot.  The simulated two-dimensional data set in Figure 9 represents a background and 

an outlying population.  The robust distances were computed and – similar to Figure 1 

– three inner tolerance ellipses (dotted lines) are shown for the 0.25, 0.5, and 0.75 
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quantiles of 2
2χ .  The outer ellipse corresponds to the threshold ( )δnc  with 2

98.0;2χδ =  

of the adaptive outlier detection method.  Values in the inner ellipse, which are at the 

center of the main mass of the data, are represented by a small dot.  Observations 

between the 0.25 and 0.5 tolerance ellipses are shown by a larger dot. Going further 

outwards, a small circle is used as a symbol, and the most distant non-outliers are 

plotted as a small plus. Finally, multivariate outliers that are outside the outer 

tolerance ellipse are represented by a large plus.  

 

For the second feature, i.e. distinguishing between different types of outliers, a colour 

(heat) scale is used that depends on the magnitude of the values for each variable.  

Low values are depicted in blue, and high values in red.  More specifically, the colour 

scale is chosen according to the Euclidean distances (dashed lines) of the scaled 

observations from the coordinate-wise minimum, such that all coordinates have the 

same influence on the symbol colour.  This procedure is illustrated in Figure 9 for the 

Euclidean distances of the simulated data. 

 

Applying the above visualisation technique to the O-horizon soil data gives the 

multivariate outlier plot in Figure 10.  Indeed, the spatial distribution of the robust 

distances becomes much clearer with the different symbols, and the colour scale is 

very helpful in distinguishing the different types of multivariate outliers.  Two outlier 

clusters are proximal to the industrial centres at Monchegorsk and Nikel.  Obviously, 

high values for most of the variables occur there, and hence give an indication of 

heavy contamination.  The northern region of the investigated area also includes many 

multivariate outliers, but the symbols are in blue or green.  This region is not at all 

contaminated and exhibits low values of the contaminant elements, and this combined 

with the input of sea spray (Mg) as a locally important process results in the outliers.  

The proposed visualisation permits discrimination between these very different 

families of outliers. 

 

7. FROM MULTIVARIATE BACK TO UNIVARIATE 

 

With the help of good visualisation for multivariate outliers it is easier to explain their 

structure and interpret the geochemical data.  To support interpretation it is useful to 
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visualise the multivariate outliers for every single variable.  Highlighting the 

multivariate outliers on the maps for every single element could achieve this.  It is 

possible to use the same symbols as in the multivariate outlier plot to provide 

important information about the structure of these outliers. 

 

For exploratory investigations, however, it is informative to have an overview of the 

position of the multivariate outliers within the distribution of the single elements.  To 

achieve this we can simply plot the values of the elements and use the same symbols 

and colours as in the multivariate outlier plot.  See Figure 11 for the Kola O-horizon 

data.  All variables are presented as a series of vertically scaled parallel bars, where 

the values are scattered randomly in the horizontal direction (one-dimensional scatter 

plot).  Since the original values of the variables have very different data ranges, the 

data were first centered and scaled for this presentation by using the robust 

multivariate estimates of location and scatter.  In this way the different variables can 

be easily compared.  This visualisation provides insight into the data structure and 

quality.  As in the multivariate outlier plot, the multivariate outliers are presented by 

large symbols “+” for every variable.  Not unsurprisingly in the light of the previous 

discussion, the multivariate outliers occur over the complete univariate data ranges, 

and not only at the extremes. Moreover, extremely low values, e.g., for Pb, which 

seem to be univariate outliers are not necessarily multivariate outliers.  The 

explanation can be found by looking at the simulation example, Figure 9, again, 

where the lowest values for the x-axis are not multivariate outliers but members of the 

main data structure.  

 

8. CONCLUSIONS 

 

An automated method to identify outliers in multivariate space was developed and 

demonstrated with real data.  In the univariate case it is often very difficult to identify 

data outliers originating from a second or other rare process, rather than extreme 

values in relation to the underlying data of the more common process(es).  Extreme 

values can be easily detected due to their distance from the core of the data. If they 

originate from the underlying data they are of little interest to the exploration or 

environmental geochemist because they will neither identify mineralisation nor 

contamination. In contrast, in the multivariate case it is necessary to also consider the 
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shape of the data, its structure, in the multivariate space and all the dependencies 

between the variables. Thus the really interesting data outliers, caused by additional, 

rare processes, can be easily identified. 

 

Not surprisingly the identified multivariate outliers in the test data set consisting of 7 

variables and 617 samples are often not the univariate extreme values.  In the context 

of Figure 1, they are equivalent to the distant off-axis individuals in the middle of the 

data range, e.g., the individual at (-1,1).  The map of the multivariate outliers clearly 

identifies contaminated sites and those affected by the input of marine aerosols near 

the coast as regionally important processes causing different data outlier populations. 

 

Although multivariate outlier identification is important for thorough data analysis, 

the task of interpretation goes beyond that first step as the researcher is also interested 

in identifying the geochemical processes leading to the data structure.  A crucial 

point, however, is that multivariate outliers are not simply excluded from further 

analysis, but that after applying robust procedures which reduce the impact of the 

outliers the outliers are actually left in the data set.  Working in this way permits the 

outliers to be viewed in the context of the main mass of the data, which facilitates an 

appreciation of their relationship to the core data.  In this context, the data analyst 

should use a variety of procedures, often graphical, to gain as great an insight as 

possible into the data structure and the controlling processes behind the observations.  

For example, since factor analysis (like many other multivariate methods) is based on 

the covariance matrix, a robust estimation of the covariance matrix will reduce the 

effect of (multivariate) outlying observations (Chork and Salminen, 1993; Reimann et 

al., 2002) and lead to a data interpretation centred on the dominant process(es).  

Furthermore, when a single dominant process is present the factor loadings may be 

interpretable in the context of that process.  When non-robust procedures are used in 

the presence of multiple processes factor analysis often behaves more like a cluster 

analysis procedure.  In such cases the factor loadings provide little or no information 

on the internal structure of the processes, but define a framework for differentiating 

between them.  Both applications have merit, the latter in exploratory data analysis, 

and the former in more detailed studies.  Unfortunately, the EDA approach is often 

misused for a detailed process study, leading to questionable conclusions. 
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We conclude that proper exploratory data analysis and outlier recognition plays an 

essential part in the interpretation of geochemical data, and we suggest, data from 

other geoscience and physical science studies.   

 

The method has been implemented in the free statistical software package R (see 

http://cran.r-project.org/). It is available as a contributed package called “mvoutlier”, 

and it contains all the programs to the proposed methods and additionally valuable 

data sets from geochemistry, like the Kola data (Reimann et al., 1998) and data from 

Northern Europe (Reimann et al., 2003).  
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FIGURE CAPTIONS 

 

Figure 1.  Simulated standard normally distributed data with a predetermined 

correlation.  The dashed lines mark the locations (means) of the variates, the ellipses 

correspond to the 0.25, 0.50, 0.75 and 0.98 quantiles of the chi-squared distribution, 

and the bold dotted lines to the 2nd and 98th empirical percentiles for the individual 

variables.  Hence, the inner rectangular (bold dotted lines) can be considered for 

univariate outlier recognition, the outer ellipse for multivariate outlier identification. 

 

Figure 2.  Scatterplot of loge(Be) and loge(Sr).  The covariance is visualised by 

tolerance ellipses.  The non-robust estimation (dotted ellipse) leads to a Pearson 

correlation coefficient of 0.66, the robust procedure (solid ellipse) estimates a Pearson 

correlation of 0.18 for the core population, i.e. weight of 1, identified by the MCD 

procedure. 

 

Figure 3.  Simulated critical values according to equation (2) for multivariate normal 

distributions with different sample sizes (x-axis) and dimensions p.  The linear trends 

for the dimensions plotted, and increasing sample size, are indicated by the lines. 

 

Figure 4.  The slopes of the lines from Figure 3 plotted against the dimension p.  The 

line is an estimation of the linear trend, and leads to equation (4). 

 

Figure 5.  Simulated critical values analogous to Figure 3, but for higher dimensions 

(p>10). 

 

Figure 6.  The slopes of the lines from Figure 5 plotted against the dimension p.  The 

line is an estimation of the linear trend, and leads to equation (5). 

 

Figure 7.  Adaptive outlier detection rule for the Kola O-horizon data: In the tails of 

the distribution (chosen as 2
98.0;7χ and indicated by a dotted line) we search for the 

supremum of the positive differences between the distribution function of 2
7χ  (solid 

line) and the empirical distribution function of 2RDi  (small circles). The resulting 

value is the adjusted quantile (dashed line) that separates outliers from non-outliers. 



 18

 

Figure 8.  Map showing the regular observations (circles) and the identified 

multivariate outliers (+). 

 

Figure 9.  Preparation for the multivariate outlier plot:  Five different symbols are 

plotted depending on the value of the robust distance.  The five classes are defined by 

tolerance ellipses (dotted lines) for the chi-squared quantiles 0.25, 0.5, and 0.75, and 

the outlier threshold of the adaptive outlier detection method.  The (heat) colour of the 

symbols varies continuously from the smallest to the largest values for every variable.  

Thus, observations lying on one dashed curve have the same colour.  

 

Figure 10.  Multivariate outlier plot with symbols according to Figure 9 provides an 

alternative presentation to Figure 8. 

 

Figure 11.  Plot of the single elements for the Kola O-horizon data, with the same 

symbols as used in Figure 10. 
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Figure 1.  Simulated standard normally distributed data with a predetermined 

correlation.  The dashed lines mark the locations (means) of the variates, the ellipses 

correspond to the 0.25, 0.50, 0.75 and 0.98 quantiles of the chi-squared distribution, 

and the bold dotted lines to the 2nd and 98th empirical percentiles for the individual 

variables.  Hence, the inner rectangular (bold dotted lines) can be considered for 

univariate outlier recognition, the outer ellipse for multivariate outlier identification. 
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Figure 2.  Scatterplot of loge(Be) and loge(Sr).  The covariance is visualised by 

tolerance ellipses.  The non-robust estimation (dotted ellipse) leads to a Pearson 

correlation coefficient of 0.66, the robust procedure (solid ellipse) estimates a Pearson 

correlation of 0.18 for the core population, i.e. weight of 1, identified by the MCD 

procedure. 
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Figure 3.  Simulated critical values according to equation (2) for multivariate normal 

distributions with different sample sizes (x-axis) and dimensions p.  The linear trends 

for the dimensions plotted, and increasing sample size, are indicated by the lines. 
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Figure 4.  The slopes of the lines from Figure 3 plotted against the dimension p.  The 

line is an estimation of the linear trend, and leads to equation (4). 
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Figure 5.  Simulated critical values analogous to Figure 3, but for higher dimensions 

(p>10). 
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Figure 6.  The slopes of the lines from Figure 5 plotted against the dimension p.  The 

line is an estimation of the linear trend, and leads to equation (5). 
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Figure 7.  Adaptive outlier detection rule for the Kola O-horizon data: In the tails of 

the distribution (chosen as 2
98.0;7χ and indicated by a dotted line) we search for the 

supremum of the positive differences between the distribution function of 2
7χ  (solid 

line) and the empirical distribution function of 2RDi  (small circles). The resulting 

value is the adjusted quantile (dashed line) that separates outliers from non-outliers. 
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Figure 8.  Map showing the regular observations (circles) and the identified 

multivariate outliers (+). 
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Figure 9.  Preparation for the multivariate outlier plot:  Five different symbols are 

plotted depending on the value of the robust distance.  The five classes are defined by 

tolerance ellipses (dotted lines) for the chi-squared quantiles 0.25, 0.5, and 0.75, and 

the outlier threshold of the adaptive outlier detection method.  The (heat) colour of the 

symbols varies continuously from the smallest to the largest values for every variable.  

Thus, observations lying on one dashed curve have the same colour.  

 



 28

74
00

00
0

75
00

00
0

76
00

00
0

77
00

00
0

78
00

00
0

79
00

00
0

40000 50000 60000 70000 80000  
 
 
 
 
 
 
 
Figure 10.  Multivariate outlier plot with symbols according to Figure 9 provides an 

alternative presentation to Figure 8. 
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Figure 11.  Plot of the single elements for the Kola O-horizon data, with the same 

symbols as used in Figure 10. 

 


