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AKAIKE’S INFORMATION CRITERIA (AIC) 

The general form for calculating AIC: 

 

AIC = -2*ln(likelihood) + 2*K 

where  ln is the natural logarithm 

 (likelihood) is the value of the likelihood 

 K is the number of parameters in the model, e.g., consider the regression equation 

                                          Growth =  10 +  5*age + 3*food + error 

                                                             ^      ^            ^                ^ 
                                                             1  +  1     +     1       +      1  =  4  parameters 
AIC can also be calculated using residual sums of squares from regression: 

 

AIC = n*ln(RSS/n) + 2*K 

where n is the number of data points (observations) 

 RSS is the residual sums of squares 

AIC requires a bias-adjustment small sample sizes. B&A rule of thumb: If ratio of       

n/K < 40, then use bias adjustment: 

 

AICc = -2*ln(likelihood) + 2*K + (2*K*(K+1))/(n-K-1) 

where variables are as defined above.  Notice that as the size of the dataset, n, increases 

relative to the number of parameters, K, the bias adjustment term on the right becomes 

very, very small. Therefore, it is recommended that you always use the small sample 

adjustment. 

 

For example, consider 3 candidate models for the growth model above, their RSS values, 

and assume n = 100 samples in the data: 

Model K RSS AICc 
Food, Age 4 25 100*ln(25/100) + 2*4 + (2*4*(4 + 1))/(100 - 4 -1) =  -130.21
Food 3 26 100*ln(26/100) + 2*3 + (2*3*(3 + 1))/(100- 3- 1) =  -128.46
Age 3 27 100*ln(27/100) + 2*3 + (2*3*(3 + 1))/(100- 3- 1) =  -124.68
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MODEL SELECTION WITH AIC 

The best model is determined by examining their relative distance to the “truth”.  The 

first step is to calculate the difference between model with the lowest AIC and the others 

as: 

∆i = AICi – min AIC 

where  ∆i  is the difference between the AIC of the best fitting model and that of model i 

AICi is AIC for model i 

min AIC is the minimum AIC value of all models 

 

For example, consider the 3 candidate models and their AICc values: 

Model K RSS AICc 
Food, Age 4 25 -130.21 
Food 3 26 -128.46 
Age 3 27 -124.68 

 

 The smallest value is for the model containing Age and Food with –130.21. Thus the ∆i 

are: 

Model K RSS AICc ∆i 
Food, Age 4 25 -130.21 -130.21 + 130.21 = 0.00
Food 3 26 -114.15 -128.46 + 130.21 = 1.75
Age 3 27 -98.73 -124.68 + 130.21 = 5.52

(Note 130.21 is added because subtracting a negative number = addition.) 

For publication purposes, candidate models are always arranged in ascending order of ∆i 

as is shown above. 

 

To quantify the plausibility of each model as being the best approximating, we need an 

estimate of the likelihood of our model given our data.  

L(model| data) 

Interestingly, this proportional (∝) to the exponent of -0.5*∆i so that 

L(model| data) ∝ exp(-0.5*∆i) 

The right hand side of above is known as the relative likelihood of the model, given the 

data.   
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MODEL SELECTION WITH AIC (CONT) 

A better means of interpreting the data is to normalize the relative likelihood values as: 

∑ =
∆−

∆−
= R

r r

i
i

)*.exp(

)*.exp(
w

1
50

50
 

where wi are known as Akaike weights for model I and the denominator is simply the sum 

of the relative likelihoods for all candidate models. 

For example, using the earlier values from the 3 growth models: 

Model K RSS AICc ∆i exp(-0.5*∆i)
Food, Age 4 25 -130.21 0 1.0000 
Food 3 26 -128.46 1.75 0.4166 
Age 3 27 -124.68 5.52 0.0631 
    Sum = 1.4798 

The sum of the relative likelihoods is 1.4798, so we obtain the Akaike weights for each 

by dividing the relative likelihood by 1.4798. 

Model K RSS AICc ∆i wi 
Food, Age 4 25 -130.21 0 0.6758 
Food 3 26 -128.46 1.75 0.2816 
Age 3 27 -124.68 5.52 0.0427 
     

The above example table is the recommended format for publication. We now interpret 

the wi as the weight of evidence that model i is the best approximating model, given the 

data and set of candidate models. Alternatively, the wi can be interpreted as the 

probability that i is the best model, given the data and set of candidate models.  For the 

above example, the model containing age and food is (0.6758/0.2816) = 2.4 times more 

likely to be the best explanation for growth compared to food only and (0.6758/0.0427) = 

15.8 times more likely than age only. As a general rule of thumb, the confidence set of 

candidate models (analogous to a confidence interval for a mean estimate) include 

models with Akaike weights that are within 10% of the highest, which is comparable 

with the minimum cutoff point (i.e., 8 or 1/8) suggested by Royall (1997) as a general 

rule-of-thumb for evaluating strength of evidence.  For the above example, this would 

include any candidate model with a value greater than (0.6758*0.10) = 0.0676.   Thus, we 

would probably exclude the model containing age only from the model confidence set 

because its weight, 0.0427<0.0676.  The conclusion would be that there was insufficient 

evidence to consider age only as a plausible explanation for growth. 
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AKAIKE IMPORTANCE WEIGHTS FOR PARAMETERS 

The relative importance of individual parameters can also be examined using Akaike 

weights. Here, the Akaike weights for each model that contains the parameter of interest 

are summed. For the growth models (above), the importance weights would be: 

 Candidate model 

Parameter 
Food 

and Age Food only Age only 
 Importance  

weight 
Food 0.6758 +  0.2816 +  0.0000 =  0.9573 
Age 0.6758 +  0.0000 +  0.0427 =  0.7184 

 

Food and age are both highly plausible explanations for growth.  However, food is 

(0.9573/0.7184) = 1.33 times more plausible, given the data and candidate models. 

  

MODEL SELECTION UNCERTAINTY AND PARAMETER ESTIMATES 
 

Often the parameter estimates (e.g., slope and intercepts in regression models) for the 

same variable in differ among candidate models. For example,  

 

Age & Food model 

Growth =  10 + 3*food +  5*age + error 

Food only model 

Growth =  15 +   7*food + error 

Age only model 

Growth =  12 +  10*age + error 

Notice that the parameter estimate for food is 3 and 7 for the “age and food” and “food 

only” models, respectively, and that of age is 5 and 10 for the “age and food” and “age 

only” models, respectively. 
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MODEL SELECTION UNCERTAINTY AND 

PARAMETER ESTIMATES (CONT) 
 

Which estimate of the effect of food and age on growth is correct?  Maybe we should just 

pick the values from the most plausible model, the “food and age” model.  However, the 

Akaike weight for the “food only” model (0.282) tells us that this model is still a 

plausible explanation for growth, given the data and set of candidate models. 

What about simply averaging the values of the models? 

Why would we want to give equal weight to each model when we know some are 

better than others? 

The idea behind AIC model averaging is to use the Akaike weights to weight the 

parameter estimates and variances (i.e., standard errors) from each model and combine 

those. Thus, we incorporate model selection uncertainty directly into the parameter 

estimates via the Akaike weights. 

 

Model-averaged parameter estimates are only calculated for those parameters (variables) 

that are included in the confidence set of models.  For the growth example, the intercept, 

food, and age are contained in the model confidence set, that is, they’re in the “food and 

age” and “food only” models. There are two methods for model-averaging- jβ̂ , where 

parameter estimates are averaged over all models in which predictor xj occurs and jβ
~

, 

where parameter estimates are averaged over all models not just those in which predictor 

xj occurs. 

Model averaged parameter estimates under jβ̂  are calculated in 4 simple steps. 
Step 1: Use the exponentiated AIC values, exp(-0.5*∆i), only from the models that 

contain the parameter. 
 
Step 2: Akaike weights need to sum to 1 (just like a probability), so add the exp(-0.5*∆i) 

values from all of the candidate models containing the parameter to get a new 
sum. 

 
Step 3: Divide the exp(-0.5*∆i) by new sum to get new Akaike weights. 
 
Step 4: Multiply the raw (individual model) parameter estimates by the new weights and 

sum. 
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MODEL SELECTION UNCERTAINTY AND 
PARAMETER ESTIMATES (CONT) 

 
These steps applied to the growth model are illustrated below with model-averaged 
estimates shown in bold. 
 

Model exp(-0.5*∆i) 
New weight 

(exp(-0.5*∆i)/sum)

Raw 
parameter 
estimate 

Weighted 
parameter 
estimate 

Intercept estimate    
Age, Food 1.0000 0.6758 *    10 =   6.758 
Food 0.4166 0.2815 *    15 =   4.223 
Age 0.0631 0.0426 *    12 =   0.512 

sum = 1.4798  sum = 11.492 
     
Food estimate    

Age, Food 1.0000 0.7059 *     3 =  2.118 
Food 0.4166 0.2941 *     7 =  2.059 

sum = 1.4166  sum = 4.176 
     
Age estimate    

Age, Food 1.0000 0.9406 *      5 =   4.703 
Age 0.0631 0.0594 *    10 =   0.594 

sum = 1.0631  sum = 5.297 
     

 
Thus we have the composite model for growth 
 

Growth =  11.492 + 4.176*food +  5.297*age + error 
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MODEL SELECTION UNCERTAINTY AND 

PARAMETER ESTIMATES (CONT) 
 
Parameter estimates are also estimated with a certain amount of error that, in computer 

outputs, is reported as the standard error of the estimate. The standard error is important 

because it is used to determine the reliability of the parameter estimate.  Large standard 

errors (generally, 2X > parameter estimate) mean that the parameter estimate is not 

reliable for predicting the outcome or interpreting the model.  Below are the outputs for 

each of the candidate models of growth. 

 
Food and age model  

Parameter Estimate Standard Error
Intercept 10.000 2.000 
Food 3.000 0.500 
Age 5.000 2.500 

Food only model  
Parameter Estimate Standard Error
Intercept 15.000 5.000 
Food 7.000 1.500 

Age only model  
Parameter Estimate Standard Error
Intercept 12.000 3.000 
Age 10.000 1.500 

 
Model-averaged parameter estimates should always have a measure of reliability. These 

are calculated similar to the model-average parameter estimates in that the used Akaike 

weights to weight the standard errors from each candidate model (above).  However, 

these standard errors are conditional on the candidate model.  Therefore, an additional 

source of variance, the model selection variance, must be included. 
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MODEL SELECTION UNCERTAINTY AND 

PARAMETER ESTIMATES (CONT) 
 
Model selection variance (MSV) is estimated using the model-averaged estimate and the 

raw parameter estimates from the candidate models and is calculated as: 

 
MSV = (model-averaged estimate – raw parameter estimate)2 

 
Estimates of model selection variance for the growth model are illustrated below. 
 

Model 

Model-
averaged
estimate

Raw 
parameter 
estimate 

Model 
selection 
variance 

Intercept estimate   
Age, Food (11.492   –  10)2 =    2.227 
Food (11.492   –  15)2 =  12.304 
Age (11.492   –  12)2 =    0.258 
Food estimate   
Age, Food (4.176   –     3)2 =    1.384 
Food (4.176   –     7)2 =    7.973 
Age estimate   
Age, Food (5.297   –     5)2 =    0.088 
Age (5.297   –   10)2 =  22.120 

 
To calculate the unconditional standard errors, the model selection variance is added to 

the conditional variance (the model standard errors squared).  The square root of this sum 

is then weighted by the Akaike weights and summed, similar to the model average 

parameter estimates. 
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MODEL SELECTION UNCERTAINTY AND 

PARAMETER ESTIMATES (CONT) 
 
 
These steps applied to the growth model are illustrated below with model-averaged 
unconditional standard errors shown in bold. 
 

Model 
Standard 

Error 

Conditional 
variance 

(Standard error)2

Model 
selection 
variance 

Square root of 
(Cond Var + MSV) 

New 
weight 

Weighted 
unconditional 
standard error

Intercept estimate      
Age, Food 2.000 4.000 2.227 2.495   * 0.6758 =  1.686 
Food 0.500 0.250 12.304 3.543   * 0.2815 =  0.998 
Age 2.500 6.250 0.258 2.551   * 0.0426 =  0.109 

     sum = 2.793 
Food estimate      

Age, Food 0.5 0.250 1.384 1.278    * 0.7059 = 0.902 
Food 1.5 2.250 7.973 3.197    * 0.2941 = 0.940 

     sum =    1.842 
Age estimate      

Age, Food 2.5 6.250 0.088 2.518    * 0.9406 = 2.368 
Age 1.5 2.250 22.12 4.937    * 0.0594 = 0.293 

     sum =    2.661 
 
For interpretation, the reliability (precision) of model averaged parameter estimates 
(MAE) should be reported with the aid of confidence intervals (CI) using the 
unconditional standard errors (SE). This can easily be accomplished as: 
 

Upper CI =  MAE  + (t-value*SE)  
Lower CI =  MAE  - (t-value*SE)  

 
where t-value is the critical value from a t-distribution based on sample size and the 
confidence interval desired, e.g., the t-value for a 95% CI with 20 or more samples = 1.95 
and the value for 90% CI with 20 or more samples = 1.64. 
 
The below example table is recommended as the format for reporting the composite 
model in a publication. 

   90% CI 
Parameter Estimate SE Upper Lower 
Intercept 11.492 2.793 16.073 6.911 

Food 4.176 1.842 7.197 1.155 
Age 5.297 2.661 9.661 0.933 
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