
INFORMATION THEORYAND AN EXTENSION OF THE MAXIMUM LIKELIHOODPRINCIPLEBY HIROTOGU AKAIKEJAN DE LEEUW1. IntroductionThe problem of estimating the dimensionality of a model occurs in various formsin applied statistics. There is estimating the number of factor in factor analysis,estimating the degree of a polynomial describing the data, selecting the variables tobe introduced in a multiple regression equation, estimating the order of an AR orMA time series model, and so on.In factor analysis this problem was traditionally solved by eyeballing residual eigen-values, or by applying some other kind of heuristic procedure. When maximum like-lihood factor analysis became computationally feasible the likelihoods for di�erentdimensionalities could be compared. Most statisticians were aware of the fact thatcomparison of successive chi squares was not optimal in any well de�ned decisiontheoretic sense. With the advent of the electronic computer the forward and back-ward stepwise selection procedures in multiple regression also became quite popular,but again there were plenty of examples around showing that the procedures werenot optimal and could easily lead one astray. When even more computational powerbecame available one could solve the best subset selection problem for up to 20 or30 variables, but choosing an appropriate criterion on the basis of which to comparethe many models remains a problem.But exactly because of these advances in computation, �nding a solution of theproblem became more and more urgent. In the linear regression situation the Cpcriterion of Mallows (1973), which had already been around much longer, and thePRESS criterion of Allen (1971) were suggested. Although they seemed to workquite well, they were too limited in scope. The structural covariance models ofJoreskog and others, and the log linear models of Goodman and others, made searchover a much more complicated set of models necessary, and the model choice prob-lems in those contexts could not be attacked by inherently linear methods. Threemajor closely related developments occurred around 1974. Akaike (1973) introducedthe information criterion for model selection, generalizing his earlier work on timeseries analysis and factor analysis. Stone (1974) reintroduced and systematized cross1



2 JAN DE LEEUWvalidation procedures, and Geisser (1974) discussed predictive sample reuse methods.In a sense Stone-Geisser cross validation is the more general procedure, but the in-formation criterion (which rapidly became Akaike's information criterion or A:I:C:)caught on more quickly.There are various reasons for this. Akaike's many students and colleagues ap-plied A:I:C: almost immediately to a large number of interesting examples (compareSakamoto, Ishiguro, and Kitagawa, 1986). In a sense the A:I:C: was more originaland more daring then cross validation, which simply seemed to amount to doing alot of additional dreary computation. A:I:C: has a close connection to the maxi-mum likelihood method, which to many statisticians is still the ultimate in rigourand precision. Moreover the complicated structural equations and loglinear analysisprograms were based on maximum likelihood theory, and the A:I:C: criterion couldbe applied to the results without any additional computation. The A:I:C: could beused to equip computerized \instant science" packages such as LISREL with an au-tomated model search and comparison procedure, leaving even fewer decisions for theuser (De Leeuw, 1989). And �nally Akaike and his colleagues succeeded in connectingthe A:I:C: e�ectively to the always mysterious area of the foundations of statistics.They presented the method, or at least one version of it, in a Bayesian framework(Akaike, 1977, 1978). There are many statisticians who consider the possibility ofsuch a Bayesian presentation an advantage of the method.2. Akaike's 1973 Paper2.1. Section 1. Introduction. We start our discussion of the paper with a quo-tation. In the very �rst sentence Akaike de�nes his information criterion, and thestatistical principle that it implies.\ Given a set of estimates �̂'s of the vector of parameters � of a probabilitydistribution with density f(x j �) we adopt as our �nal estimate the onewhich will give the maximum of the expected log-likelihood, which is byde�nition E ( log f(X j �̂)) = E (Z f(x j �) log f(x j �̂)dx);where X is a random variable following the distribution with the densityfunction f(x j �) and is independent of �̂. "This is an impressive new principle, but its precise meaning is initially ratherunclear. It is important to realize, for example, that in this de�nition the expectedvalue on the left is with respect to the joint distribution of �̂ andX, while the expectedvalue on the right is with respect to the distribution of �̂: It is also important thatthe expected log-likelihood depends both on the estimate �̂ and on the true value �0:We shall try to make this more clear by using the notation �̂(Z) for the estimate,where Z is the data, and Z is independent of X.



AKAIKE 3Akaike's principle now tells us to maximize over a class of estimates, but it doesnot tell us over which class, and it also does not tell us what to do about the problemthat �0 is unknown. He points out this is certainly not the same as the principleof maximum likelihood, which adopts as the estimate the �̂(Z) that maximizes thelog-likelihood log f(z j �) for a given realization of Z. For maximum likelihood, ofcourse, we do not need to know �0:What remains to be done is to further clarify the unclear points we mentionedabove, and to justify this particular choice of distance measure. This is what Akaikesets out to do in the rest of his paper.2.2. Section 2. Information and Discrimination. In this section Akaike justi-�es, or at least discusses, the choice of the information criterion. The model f(� j �)is a family of parametrized probability densities, with � 2 �. We shall simply referto both � and � as \models", understanding that the \model" � is a set of simple\models" �. Suppose we want to compare a general model � with the \true" model�0. From general decision theory we know that comparisons can be based withoutloss of e�ciency on the likelihood ratio � (�) = f(� j �)=f(� j �0). This suggests tode�ne the discrimination between � and �0 at x as �(� (x)) for some function �, andto de�ne the mean discrimination between � and �0, if �0 is \true", asD(�; �0;�) = Z +1�1 f(x j �0) �(� (x)) dx = EX [�(� (X))];where EX is the expected value over X, which has density f(� j �0).Now how do we choose � ? We study D(�; �0;�) for � close to �0: Under suitableregularity conditions we haveD(�; �0; �) = �(1) + 12 ��(1)(� � �0)0I(�0)(� � �0) + o(k� � �0k2);where I(�0) = Z +1�1 h�@ log f(x j �)@� ��=�0�@ log f(x j �)@� �0�=�0 i f(x j �)0 dxis the Fisher information at �0. Thus it makes sense to require that �(1) = 0 and��(1) > 0 in order to make D behave like a distance. Akaike concludes, correctly,that this derivation shows the major role played by log f(� j �); and he also con-cludes, somewhat mysteriously, that consequently the choice �(t) = �2 log(t) makesgood sense. Thus he arrives at his entropy measure, known in other contexts as thenegentropy or the Kullback-Leibler distance.D(�; �0) = 2 Z +1�1 f(x j �0) log f(x j �0)f(x j �) dx= 2EX [log f(X j �0)]� 2EX [log f(X j �)];



4 JAN DE LEEUWIt follows from the inequality ln t > 1+t that the negentropy is always non-negative,and it is equal to zero if and only if f(� j �) = f(� j �0) a.e. The negentropy canconsequently be interpreted as a measure of distance between f(� j �) and the truedistribution. The Kullback-Leibler distance was introduced in statistics as early as1951, and its use in hypothesis testing and model evaluation was propagated stronglyby Kullback (1959). Akaike points out that maximizing the expected log-likelihoodamounts to the same thing as minimizing EZ[D(�̂(Z); �0)]; the expected value overthe data of the Kullback-Leibler distance between the estimated density f(� j �̂(Z))and the true density f(� j �0): He calls D(�̂(Z); �0) the probabilistic negentropy, anduses the symbol R(�0) for its expected value.The justi�cation given by Akaike for using �(t) = �2 log(t) may seem to be abit imsy, but the result is a natural distance measure between probability densi-ties, which has strong connections with the Shannon-Wiener information criterion,the Fisher information, and the entropy measures used in thermodynamics. Oneparticular reason why this measure is attractive is the situation if we have n re-peated independent trials according to f(� j �0). This leads to densities fn(�; �)and fn(�; �0) which are products of the densities of the individual observations. IfDn(�; �0) is the Kullback-Leibler distance between these two product densities, thentrivially Dn(�; �0) = n D(�; �0): Obviously the additivity of the negentropy in thecase of repeated independent trials is an important point in its favour.2.3. Section 3. Information and the Maximum Likelihood Principle. NowAkaike has to discuss what to do about the problem of the unknown �0. The solutionhe suggests is actually the same as in the rest of statistical large sample theory, butbecause of the context of the information principle we see it in a new light.Remember that the entropy maximization principle tells us to evaluate the suc-cess of our procedure, and the appropriateness of the model �, by computing theexpectation of the probabilistic negentropy R(�0) over the data. Also remember thatR(�0) = 2EX [log f(X j �0)]� 2EX;Z [log f(X j �̂(Z))];which means that minimizing the expected probabilistic negentropy does indeedamount to the same thing as maximizing the expected log-likelihood mentioned inSection 1. Akaike's program is to estimateR(�0), and if several models are compared,to select the model with the smallest value.Of course it is still not exactly easy to carry out this program. Because �0 isunknown we cannot really minimize the negentropy, and we cannot compute theexpectation of the minimum over Z either. There is an approximate solution to thisproblem, however, if we have a large number of independent replications (or, more



AKAIKE 5generally, if the law of large numbers applies). Minus the mean log-likelihood ratioD̂n(�; �0) = 2n nXi=1 log f(xi j �0)f(xi j �)will converge in probability to the negentropy, and under suitable regularity condi-tions this convergence will be uniform in �. This makes it plausible that maximizingthe mean log-likelihood ratio (i.e. computing the maximum likelihood estimate) willtend to maximize the entropy, and that in the limit the maximum likelihood esti-mate is the maximum entropy estimate. We do not need to know �0 in order to beable to compute the maximum likelihood estimate. Thus Akaike justi�es the use ofmaximum likelihood by deriving it from his information criterion.2.4. Section 4. Extension of the MaximumLikelihood Principle. This is themain theoretical section of the paper. Akaike proposes to combine point estimationand testing of model �t into the single new principle of comparing the values of themean log-likelihood or the negentropy. This is his \extension" of the maximum like-lihood principle. We have seen in the previous section that negentropy is minimized,approximately, by using the maximum likelihood estimate for �̂(Z). What must stillbe done is to �nd convenient approximations for R(�0) at the maximum likelihoodestimate.This section is not particulary easy to read. It does not have the usual proof/theoremformat, expansions are given without precise regularity conditions, exact and asymp-totic identities are freely mixed, stochastic and deterministic expressions are notclearly distinguished, and there are some unfortunate notational and especially type-setting choices. This is an ideas paper, promoting a new approach to statistics, not amathematics paper concerned with the detailed properties of a particular technique.Although we follow the paper closely, we have tried to make the notation a bit moreexplicit, for instance by using matrices.Akaike analyzes the situation in which we have a number of subspaces �k of �;with 0 � k � m, �k+1 a subspace of �k, and �0 = �: Let dk = dim(�k): Actuallyit is convenient to simplify this, by a change of coordinates, to the problem in whichd0 = m, dk = k, and �k is the subspace of <m which has the lastm�k elements equalto zero. We assume �0 2 �0; and we assume we have n independent replications in Z.Let �̂k(Z) be the corresponding maximum likelihood estimates. Akaike suggests toestimate the expectation of the probabilistic entropy R(�0) using D̂n(�̂k(Z); �̂0(Z)):It is known that n D̂n(�̂k(Z); �̂0(Z)) is asymptotically chi square with m� k degreesof freedom if �0 2 �k. Also, in general, D̂n(�̂k(Z); �̂0(Z)) will converge in probabilityto D(�k; �0); i.e. the Kullback-Leibler distance between �0 and the model closest to�0 in �k. Thus D̂n(�̂k(Z); �̂0(Z)) will be a biased estimator of R(�0), because of thesubstitution of the maximum likelihood estimator for �0:



6 JAN DE LEEUWIf nD(�k; �0) is much larger than m then the mean likelihood ratio will be verymuch larger than expected from the chi square appoximation. If nD(�k ; �0) is muchsmaller than m; then we can do statistics on the basis of the chi square because themodel is \true". But the intermediate case, in which the two quantities are of thesame order, and the model �k is \not too false", is the really interesting one. This isthe case Akaike sets out to study. It is of course similar to studying the Pitman-powerof large sample tests by using sequences of alternatives converging to the null value.First some simpli�cations. Instead of studying D(�; �0); Akaike uses the quadraticapproximationW(�; �0) = (���0)0I(�0)(���0) discussed in Section 2. Asymptoticallythis leads to the same conclusions to the order of approximation that is used. Heuses the Fisher information matrix I(�0) to de�ne an inner product < �; � >0 and anorm k � k0 on �, so that W(�; �0) = k�� �0k20: De�ne �0jk as the projection of �0 on�k in the information metric. Then, by Pythagoras,W(�̂k(Z); �0) = k�0jk � �0k2 + k�̂k(Z)� �0jkk2: (1)The idea is to use EZ[W(�̂k(Z); �0)] to estimate R(�0).The �rst step in the derivation is to expand the mean log-likelihood ratio in aTaylor series. This givesn D̂n(�̂0(Z); �0jk) = n (�̂0(Z)� �0jk)0H[�̂0(Z); �0jk](�̂0(Z)� �0jk);n D̂n(�̂k(Z); �0jk) = n (�̂k(Z)� �0jk)0H[�̂k(Z); �0jk](�̂k(Z)� �0jk);where H[�; �] = 1n nXi=1 @2logf(xi j � + �(� � �))@�@�0 ;for some 0 � � � 1: Subtracting the two expansions givesn D̂n(�̂k(Z); �̂0(Z)) = n (�̂0(Z)� �0jk)0H[�̂0(Z); �0jk](�̂0(Z)� �0jk)� n (�̂k(Z)� �0jk)0H[�̂k(Z); �0jk](�̂k(Z)� �0jk):Let n and k tend to in�nity in such a way that n 12 (�0jk � �0) stays bounded. Then,taking plims,n D̂n(�̂k(Z); �̂0(Z)) � n k�̂0(Z)� �0jkk20 � n k�̂k(Z)� �0jkk20: (2)This can also be written asn D̂n(�̂k(Z); �̂0(Z)) � n k�0jk � �0k20 + n k�̂0(Z)� �0k20� n k�̂k(Z)� �0jkk20 � 2n < �̂0(Z)� �0; �0jk � �0 >(3)



AKAIKE 7In the next step Taylor expansions are used again. For this step we use the specialsymbol =k, where two vectors x and y satisfy x =k y if the �rst k elements are equal.n� 12 nXi=1 "@ log f(xi j �)@� #�=�0jk =k=k n 12H[�̂k(Z); �0jk](�0jk � �̂k(Z)) =k n 12H[�̂0(Z); �0jk](�0jk � �̂0(Z))Then let n and k tend to in�nity again in such a way that n 12 (�0jk��0) stays boundedand take plims. This givesn 12I(�0)(�̂k(Z)� �0jk) �k n 12I(�0)(�̂0(Z)� �0jk);and because of the de�nition of �0jk alson 12I(�0)(�̂k(Z)� �0jk) �k n 12I(�0)(�̂0(Z)� �0jk); (4)It follows that (�̂k(Z)� �0jk) is approximately the projection of (�̂0(Z)� �0) on �k.This implies that n k�̂0(Z) � �0k20 � n k�̂k(Z) � �0jkk20 and n k�̂k(Z) � �0jkk20 areasymptotically independent chi squares, with degrees of freedom m � k and k. Hethen indicates that the last term on the right-hand side of (3) is small compared tothe other terms. If we ignore its contribution, and then subtract (3) from (1), we �ndnW(�̂k(Z); �0)� n D̂n(�̂k(Z); �̂0(Z)) � n k�̂k(Z)� �0jkk2� n k�̂0(Z)� �0k20 � n k�̂k(Z)� �0jkk20:Replacing the chi squares by their expectations givesnEZhW(�̂k(Z); �0)i � n D̂n(�̂k(Z); �̂0(Z)) + 2k �m: (5)This de�nes the A:I:C:Of course in actual examplesm may not be known, or may bein�nite (think of order estimation or log-spline density estimation) but in comparingmodels we do not actually need m anyway, because it is the same for all models.Thus in practice we simply compute �2Pni=1 log f(xi j �̂k(Z))+ 2k for various valuesof k.2.5. Section 5. Applications. In this section Akaike discusses the possible ap-plications of his principle to problems of model selection. As we pointed out in theintroduction the systematic approach to these problems, and the simpel answer pro-vided by the A:I:C:, at no additional cost, has certainly had an enormous impact.The theoretical contributions of the paper, discussed above, have been much lessinuential than the practical ones. The recipe has been accepted rather uncriticallyby many applied statisticians, in the same way as the principles of least squares ormaximum likelihood or maximum posterior probability have been accepted in thepast without much questioning.



8 JAN DE LEEUWRecipes for the application of the A:I:C: to factor analysis, principal componentanalysis, analysis of variance, multiple regression, and autoregressive model �ttingin time series analysis are discussed. It is interesting that Akaike already publishedapplications of the general principle to time series analysis in 1969, and to factoranalysis in 1971. He also points out the equivalence of the A:I:C: to Cp proposed byMallows in the linear model context.2.6. Section 6. Numerical Examples. This section has two actual numericalexamples, both estimating the order k of an autoregressive series. Reanalyzing databy Jenkins and Watts leads to the estimate k = 2, the same as that found by theorginal analysis using partial autocorrelation methods. An reanalysis of an exampleby Whittle leads to k = 65, while Whittle has decided on k = 4 using likelihood-ratio tests. Akaike argues that this last example illustrates dramatically that usingsuccessive log-likelihoods for testing can be quite misleading.2.7. Section 7. Concluding Remarks. Here Akaike discusses briey, again, therelations between maximum likelihood, the dominant paradigm in statistics, and theShannon-Wiener entropy, the dominant paradigm in information and coding theory.As Section 3 shows, there are strong formal relationships, and using expected like-lihood (or entropy) makes it possible to combine point-estimation and hypothesistesting in a single framewrok. It also gives \easy"answers to very important but verydi�cult multiple decision problems.3. DiscussionThe reasoning behind using X, the independent replication, to estimate R(�0), isthe same as the reasoning behind cross validation. We use �̂(Z) to predict X, usingf(X j �̂(Z) as the criterion. If we use the maximum likelihood estimate we system-atically underestimate the distance between the data and the model, because theestimate is constructed by minimizing this distance. Thus we need an independentreplication to �nd out how good our �t is, and plugging in the independent repli-cation leads to overestimation of the distance. The A:I:C: corrects for both biases.The precise relationship between A:I:C: and cross validation has been discussed byStone (1977). At a later stage Akaike (1978) has provided an asymptotic Bayesianjusti�cation of sorts. As we have indicated, A:I:C: estimates the expected distancebetween the model and the true value We could also formulate a related decisionproblem as estimating the dimensionality of the model, for instance by choosing froma nested sequence of models. It can be shown that the minimum A:I:C: does notnecessarily give a consistent estimate of the true dimensionality. Thus we may wantto construct better estimates, for instance choosing the model dimensionality withthe highest posterior probability. This approach, however, has led to a proliferationof criteria, among them the B:I:C: criteria of Schwartz (1978) and Akaike (1977),or the M:D:L: principle of Rissanen (1978, and later papers). Other variations have



AKAIKE 9been proposed by Shibata, Bozdogan, Hannan, and others. Compare Sclove (1987)or Hannan and Deistler (1988, Chapter 7) for a recent review. We do not discussthese alternative criteria here, because they would take us too far astray, and wouldentangle us in esoteric asymptotics and ad hoc inference principles. We think thejusti�cation based on cross validation is by far the most natural one.We have seen that the paper discussed here was an expository one, not a math-ematical one. It seems safe to assume that many readers simply skipped Section 4,and rapidly went on to the examples. We have also seen that the arguments givenby Akaike in this expository are somewhat heuristic, but in later work by him, andby his students such as Inagaki and Shibata, a rigorous version of his results hasalso been published. Although many people contributed to the area of model selec-tion criteria, and although there are now many competing criteria, it is clear thatAkaike's A.I.C. is by far the most important contribution. This is due to the forcefulpresentation and the great simplicity of the criterion, and it may be due partly to theimportant position of Akaike in Japanese and International Statistics. But most ofall, we like to think, the A.I.C caught on so quickly because of the enormous emphasison interesting and very real practical applications that has always been an importantcomponent of Akaike's work.4. Biographical InformationHirotogu Akaike was born in 1927 in Fujinomiya-shi, Shizuoka-ken, in Japan. Hecompleted the B.S. and D.S. degrees in Mathematics at the University of Tokyoin 1952 and 1961. He started working at the Institute of Statistical Mathematics in1952, worked his way up thorugh the ranks, and became its Director-General in 1982.In 1976 he had already become editor of the Annals of the Institute Of StatisticalMathematics, and he still holds both these functions, which are certainly the mostimportant ones in statistics in Japan. Akaike has received many prizes and honors,he is member of the I.S.I., fellow of the I.M.S., honorary fellow of the R.S.S., and thecurrent president of the Japanese Statistical Society.It is perhaps safe to say that Akaike's main contribution has been in the areaof time series analysis. He developed in an early stage of his career the programpackage TIMSAC, for Time Series Analysis and Control, and he and his studentshave been updating TIMSAC which is now in its fourth major revision and extension.TIMSAC has been used in many areas of science. In the course of developing TIMSACAkaike had to study properties of optimization methods. He contributed the �rsttheoretically complete study of the convergence properties of the optimum gradient(or steepest descent) method. He also analyzed and solved the identi�cation problemfor multivariate time series, using basically Kalman's state space representation, butrelating it e�ectively to canonical analysis. And in modeling autoregressive patternshe came up with the FPE (or Final Prediction Error) criterion, which later developedrapidly into the A.I.C.
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